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Simplified PN (SPN ) approximations to the equations of radiative heat transfer
are derived for optically thick, diffusive systems, and appropriate boundary con-
ditions are formulated. The SPN equations are derived by an asymptotic analysis,
while the boundary conditions are obtained from a variational analysis. Numeri-
cal comparisons of the SPN , equilibrium diffusion, and full transport equations are
presented to demonstrate the accuracy and efficiency of the SPN approximations.
c© 2002 Elsevier Science (USA)

1. INTRODUCTION

Radiative transfer equations are used in many applications, for example, to describe
cooling down of molten glass or heat transfer in gas turbines. In glass manufacturing, a
hot melt of glass is cooled down to room temperature. This annealing must be monitored
carefully to avoid excessive temperature differences, which may affect the quality of the
product or even lead to cracking. To control the annealing process, the radiative transfer
equations may be used to predict accurately the temperature evolution in the glass. These
equations involve the direction-dependent thermal radiation field, because a significant part
of the energy is transported by photons. Unfortunately, this makes the numerical solution
of the radiative transfer equations complicated and expensive, particularly in higher spatial
dimensions. (Besides the spatial, time, and frequency variables, the directional variables
also must be included, giving a 7-dimensional phase space.) Thus, approximations of the
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full radiation transport model that are computationally less time consuming, yet sufficiently
accurate, are of great practical interest.

A widely used approximation to radiative transfer is the spherical harmonic, or PN

approximation. A major drawback of this approximation for complicated problems in higher
spatial dimensions is the large number and complexity of equations that must be solved. In
this paper, we propose the simpler SPN approximations as alternatives to the PN equations.
The SPN approximation is based on coupled systems of diffusion (elliptic) equations that
depend on space, time, and frequency (not direction). The number and complexity of the
SPN equations are considerably reduced compared to the PN equations. See [16] for the PN

equations in the considered context.
The SPN method was introduced in 1961 by Gelbard in the field of nuclear reactor theory

[4]. For many years, this method suffered from a lack of theoretical foundation, with the
result that it was not completely accepted in the technical community. However, this has
been remedied during the last decade by the work of one of the authors of this paper, amongst
others, such that the method has now been substantiated [1, 8].

To model glass cooling, we consider the following radiative transfer problem. For a point
x in the domain V ⊂ R

3, we have the energy balance equation

cmρm
∂T

∂t
= ∇ · k∇T −

∫ ∞

ν1

∫
S2

κ(B − I ) d	 dν, (1.1a)

and the equation of transfer

∀ν > ν1, 	 ∈ S2 :
1

c

∂ I

∂t
+ 	 · ∇ I = κ(B − I ). (1.1b)

On the boundary, x ∈ ∂V , the incident radiation is prescribed by the semi-transparent
boundary condition

I (	, ν) = ρ(n · 	)I (	′, ν) + [1 − ρ(n · 	)]B(ν, Tb), ∀n · 	 < 0, (1.1c)

where

	′ = 	 − 2(n · 	)n

is the specular reflection of 	 off the surface ∂V , and the temperature satisfies

kn · ∇T = h(Tb − T ) + απ

(
n2

n1

)2 ∫ ν1

0
[B(ν, Tb) − B(ν, T )] dν. (1.1d)

At initial time t = 0, the temperature is prescribed by

T (x, 0) = T0(x), x ∈ V . (1.1e)

In the above equations, I (x, t, 	, ν) denotes the specific intensity of radiation at point
x ∈ V , traveling in direction 	 ∈ S2, with frequency ν > ν1, at time t ≥ 0; and T (x, t)
denotes the material temperature, for x ∈ V and t ≥ 0. At the exterior boundary ∂V between
the glass and surrounding air, with refractive indices n1 > n2, respectively, light rays are
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reflected and refracted. This is modeled by the semi-transparent boundary condition (1.1c),
the physics of which is described next.

At points x exterior to V and for directions 	 pointing toward V , photon radiation exists
in a Planckian distribution B(ν, Tb) at specified temperature Tb. Thus, a point x just outside
of V observes this Planckian radiation, for all incident directions (all directions 	 satisfying
	 · n < 0, where n is the unit outer normal).

On ∂V , a specified fraction [the reflectivity ρ(n · 	), defined below] of the above incident
radiation is specularly reflected back into the exterior of V , while the remaining fraction,
1 − ρ(n · 	), penetrates through ∂V into V . The same physics applies to photons inside V
that attempt to leak out through ∂V .

Thus, a point x just inside of ∂V sees, for incident directions 	, the penetrating radiation
described above,

Ip(	, ν) ≡ [1 − ρ(n · 	)]B(ν, Tb) (1.2a)

plus the reflected radiation, which in the process of attempting to leak out through ∂V is
specularly reflected back into V :

Ir (	, ν) ≡ ρ(n · 	)I (	′, ν). (1.2b)

The sum Ir + Ip constitutes the right side of Eq. (1.1c). This boundary condition holds for
points x just inside of ∂V .

The initial temperature is prescribed by Eq. (1.1e), and the boundary condition for the T
is given by Eq. (1.1d). The integration in the second term of this equation is performed on
the opaque interval of the spectrum [0, ν1], where radiation is completely absorbed.

Equations (1.1) also contain the speed of light c, the opacity κ(ν), the heat conductivity
k, the convective heat transfer coefficient h, the specific heat cm , the density ρm , and the
Planck function

B(ν, T ) = n2
1

2h Pν3

c2

(
e

h P ν

kB T − 1
)−1

for black body radiation in glass. The Planck function involves Planck’s constant h P ,
Boltzmann’s constant kB , and the speed of light in vacuum c. For industrial glass-cooling
problems, the 1/c term in Eq. (1.1b) is negligible and is not included in the remainder of
paper. (Effectively, the speed of photons is approximated as ∞.)

The reflectivity ρ ∈ [0, 1] is the proportion of radiation that is reflected. It is equal to 1 if
total reflection occurs, i.e., if θ1 > θc, where θc is the critical angle given by sin θc = n2/n1.
Otherwise, ρ is calculated according to Fresnel’s equation

ρ(µ) = 1

2

[
tan2(θ1 − θ2)

tan2(θ1 + θ2)
+ sin2(θ1 − θ2)

sin2(θ1 + θ2)

]
,

where the refraction angles θ1 and θ2 are given by cos θ1 = |n · 	| = µ and Snell’s law of
refraction

n1 sin θ1 = n2 sin θ2.
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Finally, the hemispheric emissivity α of the boundary surface in (1.1d) is related to the
reflectivity ρ by

α = 2n1

∫ 1

0
[1 − ρ(µ)] dµ.

If Tb = constant, then a steady-state equilibrium solution of the above problem is T (x, t) =
Tb and I (x, t, 	, ν) = B(ν, Tb). This solution is the t → ∞ limit of a problem in which
the initial temperature T0(x) inside the glass differs from Tb.

For more detailed discussions of these equations and applications in glass manufacturing
problems, we refer the reader to [6, 7, 9, 16] and monographs [5, 12].

In this paper we study optically thick problems, in which the opacity κ is large and the
radiation propagates mainly in a diffusion-like manner. To introduce the proper scalings,
we rewrite the above equations in dimensionless form, introducing reference values that
correspond to typical values of the physical quantities. We impose the relations

tref = cmρmκref x2
ref

Tref

Iref
and kref = Iref

κref Tref

on these reference values and define the dimensionless parameter

ε = 1

κref xref
, (1.3)

which satisfies 0 < ε � 1 in the optically thick, diffusive regime. The rescaled equations
read (without marking the scaled quantities)

ε2 ∂T

∂t
= ε2∇ · k∇T −

∫ ∞

ν1

∫
S2

κ(B − I ) d	 dν, (1.4a)

∀ν > ν1, 	 ∈ S2: ε	 · ∇ I = κ(B − I ). (1.4b)

The boundary condition for the temperature becomes

εk n · ∇T = h(Tb − T ) + απ

(
n2

n1

)2 ∫ ν1

0
[B(ν, Tb) − B(ν, T )] dν. (1.4c)

The initial condition for the temperature [Eq. (1.1e)] and the boundary condition on the
incident intensity [Eq. (1.1c)] are unaffected by this conversion to dimensionless variables.

It is well known that an outer asymptotic expansion of Eqs. (1.4a) and (1.4b) leads to the
equilibrium diffusion or Rosseland approximation

∂T

∂t
= ∇ · (k + kr (T ))∇T, with kr (T ) = 4π

3

∫ ∞

ν1

1

κ

∂ B

∂T
dν,

which is expected to be valid in the interior of V ; see e.g. [9, 13, 14]. Unfortunately, this
relatively simple diffusion approximation does not describe boundary layers—the regions
in which the temperature gradients (and the mechanical stresses in the glass) are greatest.
Thus, the question arises whether more sophisticated “diffusion” approximations can model
the boundary layers at the outer boundary and internal interfaces of the system. In the realm
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of neutron transport, such higher-order asymptotic corrections to diffusion theory exist
and are reasonably well understood; they are the Simplified PN (SPN ) theories mentioned
above [1, 4, 8, 15]. Although these theories are diffusive in nature, they describe boundary
layers and can be remarkably more accurate than the standard diffusion approximation for
neutrons. In this paper, we adopt some of the SPN concepts from neutronics to the problem
of photon transport and annealing in glass.

For other approximate theories for the above radiative transfer equations, and applications,
see for example [3, 11].

The remainder of this paper is organized as follows. In Section 2, the outer asymptotic
expansion to Eqs. (1.4a) and (1.4b) is performed. The resulting approximations consist
of replacing Eq. (1.4b) by one or more SPN equations, in which the angular variable 	

is eliminated (but the frequency variable ν is not eliminated). These frequency-dependent
diffusion equations are coupled to each other and to the frequency-independent heat transfer
equation (1.4a). In Section 3, boundary conditions for the SPN equations are formulated
from a variational analysis. (The SPN equations themselves can be derived variationally, as
well as asymptotically, but this process is very laborious [1, 14, 15].) Sections 4 and 5 contain
1-D and multi-D numerical simulations, which demonstrate the accuracy and efficiency of
the SPN apaproximations. We conclude this paper with a discussion in Section 6.

2. ASYMPTOTIC DERIVATION OF THE SPN EQUATIONS

To solve Eq. (1.4b) in domain V , we write this equation as

(
1 + ε

κ
	 · ∇

)
I (x, t, 	, ν) = B(ν, T )

and apply Neumann’s series to formally obtain

I =
(

1 + ε

κ
	 · ∇

)−1

B

∼=
[

1 − ε

κ
	 · ∇ + ε2

κ2
(	 · ∇)2 − ε3

κ3
(	 · ∇)3 + ε4

κ4
(	 · ∇)4 · · ·

]
B. (2.1)

Integrating with respect to 	 and using

∫
S2

(	 · ∇)n d	 = [1 + (−1)n]
2π

n + 1
∇n,

where ∇2 = ∇ · ∇ = � is the spatial Laplacian, we obtain

ϕ =
∫

S2
I d	 = 4π

[
1 + ε2

3κ2
∇2 + ε4

5κ4
∇4 + ε6

7κ6
∇6 · · ·

]
B + O(ε8).
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Hence,

4π B =
[

1 + ε2

3κ2
∇2 + ε4

5κ4
∇4 + ε6

7κ6
∇6

]−1

ϕ + O(ε8)

=
{

1 −
[

ε2

3κ2
∇2 + ε4

5κ4
∇4 + ε6

7κ6
∇6

]
+

[
ε2

3κ2
∇2 + ε4

5κ4
∇4 + ε6

7κ6
∇6

]2

−
[

ε2

3κ2
∇2 + ε4

5κ4
∇4 + ε6

7κ6
∇6

]3

· · ·
}

ϕ + O(ε8),

This directly yields the formal asymptotic equation for ϕ:

∀ν > ν1: 4π B =
[

1 − ε2

3κ2
∇2 − 4ε4

45κ4
∇4 − 44ε6

945κ6
∇6

]
ϕ + O(ε8). (2.2)

Taking terms of O(ε4), O(ε6) or O(ε8) into account and proceeding as shown below, we
obtain the SP1, SP2, and SP3 approximations, respectively. These approximations are all
independent of 	 and contain frequency ν and time t as parameters.

2.1. SP1 and Rosseland (Diffusion) Approximations

From Eq. (2.2), we obtain

4π B = ϕ − ε2

3κ2
∇2ϕ + O(ε4)

which, up to O(ε4), may be written as

∀ν > ν1: −ε2∇ · 1

3κ
∇ϕ + κϕ = κ(4π B). (2.3a)

In this equation, ν is simply a parameter. Also, in the derivation of Eq. (2.2), κ is independent
of space, but we have written Eq. (2.3a) as though κ were space-dependent. [A more careful
calculation shows that for heterogeneous media (space-dependent κ), Eq. (2.3a) remains
asymptotically correct.]

In practice, Eqs. (2.3a) are solved independently for each frequency or frequency group
and are subsequently coupled via Eq. (1.4a). By (2.3a),

∫ ∞

ν1

∫
S2

κ(B − I ) d	 dν =
∫ ∞

ν1

κ(4π B − ϕ) dν

= −ε2
∫ ∞

ν1

∇ · 1

3κ
∇ϕ dν + O(ε4).

Thus, the energy balance equation (1.4a) becomes, up to O(ε2),

∂T

∂t
= ∇ · k∇T +

∫ ∞

ν1

∇ · 1

3κ
∇ϕ dν. (2.3b)

Equations (2.3a) and (2.3b) are the SP1 approximation to Eqs. (1.4a) and (1.4b). Initial and
boundary conditions for these equations are discussed below in Section 3.
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Since (2.3b) has O(ε2) error, the overall SP1 error is O(ε2). Using ϕ = 4π B + O(ε2)

[which follows from Eq. (2.3a)] in (2.3b), one obtains up to O(ε2) the simpler equation

∂T

∂t
= ∇ · k∇T +

∫ ∞

ν1

∇ · 1

3κ
∇(4π B) dν

= ∇ · k∇T + ∇ ·
(

4π

3

∫ ∞

ν1

1

κ

∂ B

∂T
dν

)
∇T (2.4)

for T (x, t) alone, in which the direction and frequency variables have been eliminated.
Equation (2.4) is the conventional equilibrium diffusion or Rosseland approximation to
Eqs. (1.4a) and (1.4b).

Equations (2.3) are more complicated and costly to solve than Eq. (2.4) because they
contain the frequency variable ν. However, they permit a boundary layer behaviour near
the boundary ∂V that is not present in Eq. (2.4). Thus, although Eqs. (2.3) and (2.4) are
formally asymptotically equivalent—both having O(ε2) errors—the more complicated SP1

equations (2.3) contain more transport physics and, in practice, produce more accurate
results.

2.2. SP2 Approximation

From Eq. (2.2), we get for ε � 1

4π B = ϕ − ε2

3κ2
∇2ϕ − 4ε2

15κ2
∇2

(
ε2

3κ2
∇2ϕ

)
+ O(ε6).

This implies

ε2

3κ2
∇2ϕ = ϕ − 4π B + O(ε4).

Hence, with O(ε6) error, the expansion above gives

4π B = ϕ − ε2

3κ2
∇2ϕ − 4ε2

15κ2
∇2[ϕ − 4π B] = ϕ − ε2

3κ2
∇2

[
ϕ + 4

5
(ϕ − 4π B)

]
,

or equivalently,

−ε2∇ · 1

3κ
∇

[
ϕ + 4

5
(ϕ − 4π B)

]
+ κϕ = κ(4π B). (2.5)

This yields

∫ ∞

ν1

∫
S2

κ(B − I ) d	 dν = −ε2
∫ ∞

ν1

∇ · 1

3κ
∇

[
ϕ + 4

5
(ϕ − 4π B)

]
dν + O(ε4). (2.6)

Thus, the energy balance equation (1.4a) becomes, up to O(ε4),

∂T

∂t
= ∇ · k∇T +

∫ ∞

ν1

∇ · 1

3κ
∇

[
ϕ + 4

5
(ϕ − 4π B)

]
dν. (2.7)
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Now, if we define

ξ = ϕ + 4

5
(ϕ − 4π B), (2.8)

then Eqs. (2.5) and (2.7) become the SP2 equations:

∂T

∂t
= ∇ · k∇T +

∫ ∞

ν1

∇ · 1

3κ
∇ξ dν, (2.9a)

−ε2∇ · 3

5κ
∇ξ + κξ = κ(4π B). (2.9b)

(Boundary conditions for Eqs. (2.9) are described later in Section 3.) After solving
Eqs. (2.9) for ξ and T , φ can be found from Eq. (2.8):

ϕ = 5

9
ξ + 4

9
(4π B).

The SP2 equations (2.9) and the SP1 equations (2.3) are remarkably similar. This is
because the SP1 equations contain some, but not all, of the O(ε4) correction terms. In
the realm of neutron transport, the SP2 approximation has not found favour because, in
the presence of material inhomogenities in κ , it yields discontinuous solutions, which are
physically unrealistic. However, it is obvious that Eqs. (2.9) cannot produce a discontinuous
solution.

Finally, we emphasize that Eqs. (2.9) are an O(ε4) approximation to Eqs. (1.4) if (i) κ is
independent of space, or (ii) the entire problem has a planar-geometry space-dependence
(including κ). In general multidimensional geometries with space-dependent κ , Eqs. (2.9)
are not an O(ε4) approximation to Eqs. (1.4) because other O(ε2) terms exist that have been
ignored. Nevertheless, in practice, Eqs. (2.9) can be used for multidimensional problems
with space-dependent κ , with the understanding that the resulting solution may not have a
strictly O(ε4) error.

2.3. SP3 Approximation

Now, ignoring terms of O(ε8) in Eq. (2.2), we obtain

4π B = ϕ − ε2

3κ2
∇2

[
ϕ + 4ε2

15κ2
∇2ϕ + 44ε4

315κ4
∇4ϕ

]
+ O(ε8)

= ϕ − ε2

3κ2
∇2

[
ϕ +

(
1 + 11ε2

21κ2
∇2

)(
4ε2

15κ2
∇2ϕ

)]
+ O(ε8)

= ϕ − ε2

3κ2
∇2

[
ϕ +

(
1 − 11ε2

21κ2
∇2

)−1( 4ε2

15κ2
∇2ϕ

)]
+ O(ε8). (2.10)

Hence, if we define

ϕ2 ≡
(

1 − 11

21

ε2

κ2
∇2

)−1( 2ε2

15κ2
∇2ϕ

)
, (2.11)
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then Eq. (2.10) becomes, up to O(ε8),

4π B = ϕ − ε2

3κ2
∇2(ϕ + 2ϕ2),

or

∀ν > ν1: −ε2∇ · 1

3κ
∇(ϕ + 2ϕ2) + κϕ = κ(4π B). (2.12a)

Equation (2.11) may be written

− 11ε2

21κ2
∇2ϕ2 + ϕ2 = 2

15

ε2

κ2
∇2ϕ = 2

5

(
ε2

3κ2
∇2ϕ

)

= 2

5

[
−4π B + ϕ − 2ε2

3κ2
∇2ϕ2

]
,

or (
4

15
− 11

21

)
ε2

κ2
∇2ϕ2 + ϕ2 = 2

5
(ϕ − 4π B),

or eventually

∀ν > ν1: −ε2∇ · 9

35κ
∇ϕ2 + κϕ2 − 2

5
κϕ = −2

5
κ(4π B). (2.12b)

By (2.12a), we get up to O(ε6)

∫ ∞

ν1

∫
S2

κ(B − I ) d	 dν = −ε2
∫ ∞

ν1

∇ · 1

3κ
∇(ϕ + 2ϕ2) dν.

Thus, the energy balance equation (1.4b) becomes

∂T

∂t
= ∇ · k∇T +

∫ ∞

ν1

∇ · 1

3κ
∇(ϕ + 2ϕ2) dν. (2.12c)

Equation (2.12c) and the two approximate equations (2.12a), (2.12b) form the SP3 approx-
imation to Eqs. (1.4a) and (1.4b).

The SP3 equations can be expressed in an algebraically simpler way. Let us calculate
θ × {Eq. (2.12a)} + {Eq. (2.12b)}:

−ε2∇ · 1

κ
∇

{
θ

3
(ϕ + 2ϕ2) + 9

35
ϕ2

}
+ κ

{
θϕ + ϕ2 − 2

5
ϕ

}
= κ

(
θ − 2

5

)
(4π B).

We seek values of θ such that the two functions in the braces on the left are scalar multiples
of each other. More explicitly, we look for values of θ such that

θ

3
(ϕ + 2ϕ2) + 9

35
ϕ2 = µ2

(
θϕ + ϕ2 − 2

5
ϕ

)
, (2.13)

where µ2 > 0 is a constant to be determined. Equation (2.13) holds for arbitrary ϕ and ϕ2 iff

θ

3
= µ2

(
θ − 2

5

)
and

2θ

3
+ 9

35
= µ2.
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Eliminating θ , we obtain a quadratic equation in µ2,

1

2
µ2 − 9

70
= µ2

(
2

3
µ2 − 11

14

)
,

which has two positive real solutions,

µ2
1 = 3

7
− 2

7

√
6

5
and µ2

2 = 3

7
+ 2

7

√
6

5
.

The corresponding values of θ are

θ1 = 9

35
− 3

7

√
6

5
and θ2 = 9

35
+ 3

7

√
6

5
.

Now, relation (2.13) implies, for n = 1, 2,

(
−∇ · ε2µ2

n

κ
∇ + κ

)[
θnϕ + ϕ2 − 2

5
ϕ

]
=

(
θn − 2

5

)
κ(4π B). (2.14)

This suggests that we define two new independent variables for n = 1, 2,

ψn = θnϕ + ϕ2 − 2/5ϕ

θn − 2/5
= ϕ + 1

θn − 2/5
ϕ2 = ϕ + γnϕ2, (2.15)

where

γn = 1

θn − 2/5
= 5

7

[
1 + (−1)n3

√
6

5

]
.

The two equations in (2.14) become

−∇ · ε2µ2
1

κ
∇ψ1 + κψ1 = κ(4π B), (2.16a)

−∇ · ε2µ2
2

κ
∇ψ2 + κψ2 = κ(4π B). (2.16b)

The advantage of this form of the SP3 equations is that the diffusion equations are uncou-
pled. However, we show below in section 3 that a weak coupling remains in the boundary
conditions.

The linear transformation of variables above is inverted according to the formulae

ϕ = γ2ψ1 − γ1ψ2

γ2 − γ1
and ϕ2 = ψ2 − ψ1

γ2 − γ1
. (2.17)

Defining three constants

w0 = 1

γ2 − γ1
= 7

30

√
5

6
= 7

36

√
6

5
, (2.18a)

w1 = γ2

γ2 − γ1
= 1

6

(
3 +

√
5

6

)
, w2 = −γ1

γ2 − γ1
= 1

6

(
3 −

√
5

6

)
, (2.18b)
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we can write ϕ = w1ψ1 + w2ψ2 and ϕ2 = w0(ψ2 − ψ1), and we have furthermore

1

3
(ϕ + 2ϕ2) = 1

3
(w1 − 2w0)ψ1 + 1

3
(w2 + 2w0)ψ2 = a1ψ1 + a2ψ2.

Here again we have introduced constants

a1 = w1 − 2w0

3
= 1

30

(
5 − 3

√
5

6

)
, a2 = w2 + 2w0

3
= 1

30

(
5 + 3

√
5

6

)
.

In this way, the SP3 energy balance equation (2.12c) above becomes

∂T

∂t
= ∇ · k∇T +

∫ ∞

ν1

∇ · 1

κ
∇(a1ψ1 + a2ψ2) dν. (2.19)

Thus, the SP3 equations can also be written as Eqs. (2.16) and (2.19). As before, these
equations are strictly asymptotic only if κ is independent of space, or if the entire problem
has planar-geometry space dependence.

For general multidimensional problems, it is easily seen that the SP1 and P1 equations are
identical. Also, for planar geometry, the SPN and respective PN equations are identical for all
N . However, for general multidimensional problems, and for all N ≥ 2, the SPN equations
are fewer in number and simpler in structure than the corresponding PN equations.

3. SPN BOUNDARY CONDITIONS

In the previous section, we used a formal asymptotic analysis in the interior of the
glass system to derive the SPN approximations to the radiative transfer equations. To obtain
boundary conditions for the SPN equations, a traditional asymptotic approach would employ
a boundary layer analysis on the outer boundary of the system. Unfortunately, this approach
is impractical because of the extreme complexity of the (asymptotically) high-order terms
that would have to be included. Thus, to obtain boundary conditions for use in practical
applications, we follow a simpler (non-asymptotic) approach.

This same difficulty occurs in the field of neutron transport—the asymptotic derivation of
the SPN equations is relatively straightforward, but the asymptotic derivation of boundary
conditions for these equations is extremely complicated. However, the steady-state neu-
tron transport SPN equations themselves, and corresponding boundary conditions, can be
also derived from a variational principle; see [1, 15]. The variational analysis is extremely
lengthy, but the results are fairly simple and in practice work well (i.e., are accurate). Here,
we use the boundary conditions developed for neutron transport to state (and rewrite in a
more suitable form) the boundary conditions for the SP1, SP2, and SP3 approximations to
the transport problem (1.4b) with the boundary condition (1.1c). Later, in the Discussion
(Section 4), we describe a formal procedure by which the multidimensional SPN equa-
tions and boundary conditions stated below can be obtained from the planar-geometry PN

equations and boundary conditions.
We consider the transport equation (1.4b)

∀ν > ν1: ε	 · ∇ I (x, 	) + κ I (x, 	) = κ B, x ∈ V,
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with semi-transparent boundary conditions on ∂V

I (x, 	) = ρ(n · 	)I (x, 	′) + [1 − ρ(n · 	)]B(ν, Tb), n · 	 < 0.

As before, we define the following quantity (which in common notation is 4π× the mean
intensity):

ϕ(x) =
∫

S2
I (x, 	) d	.

We also define two integrals of the penetrating radiation [see Eq. (1.2a)]: for m = 1 and 3,

Im(x, ν) =
∫

n·	<0
Pm(|	 · n|)Ip(	, ν) d	

=
(∫

n·	<0
Pm(|	 · n|)[1 − ρ(n · 	)] d	

)
B(ν, Tb)

=
(

2π

∫ 1

0
Pm(µ)[1 − ρ(−µ)] dµ

)
B(ν, Tb)

= ρm B(ν, Tb), (3.1a)

where

ρm =




(1 − 2r1)π, m = 1,

−
(

1

4
+ 2r5

)
π, m = 3.

(3.1b)

Here, we have used the Legendre polynomials of order 1 and 3,

P1(µ) = µ and P3(µ) = 5

2
µ3 − 3

2
µ,

and we have defined the integrals:

r1 =
∫ 1

0
µρ(−µ) dµ, r5 =

∫ 1

0
P3(µ)ρ(−µ) dµ,

r2 =
∫ 1

0
µ2ρ(−µ) dµ, r6 =

∫ 1

0
P2(µ)P3(µ)ρ(−µ) dµ,

r3 =
∫ 1

0
µ3ρ(−µ) dµ, r7 =

∫ 1

0
P3(µ)P3(µ)ρ(−µ) dµ.

r4 =
∫ 1

0
µP3(µ)ρ(−µ) dµ,

The boundary conditions in [1, 15] were derived for the case ρ = 0. For semi-transparent
boundary conditions, the same arguments apply and the calculations can be analogously
carried out, the only difference being modifications in the coefficients. We therefore content
ourselves with stating the results.
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In the SP1 approximation (2.3a), the boundary condition for ϕ is

∀ν > ν1: ϕ(x) +
(

1 + 3r2

1 − 2r1

2ε

3κ

)
n · ∇ϕ(x) = 4π Bb(x), (3.2)

where Bb(x) = B(ν, Tb(x)).
In the SP2 approximation (2.9b), the boundary condition for ϕ is [15]

ϕ(x) +
(

1 + 3r2

1 − 2r1

2ε

3κ

)
n · ∇

(
ϕ(x) + 4

5
[ϕ(x) − 4π B(x)]

)

+
(

1 − 12r3 + 4r1

2(1 − 2r1)

)
[ϕ(x) − 4π B(x)] = 4π Bb(x), (3.3)

where B(x) = B(ν, T (x)). We note that Eq. (3.3) reduces to Eq. (3.2) if we delete the
[ϕ − 4π B] terms. Equation (3.3) can be written by using Eq. (2.8) as

ϕ = 5

9
ξ + 4

9
(4π B)

to replace ϕ by the SP2 dependent variable ξ . We obtain, after straightforward algebra,

∀ν > ν1: ξ(x) +
(

1 + 3r2

1 − 4r3

4ε

5κ

)
n · ∇ξ(x)

= 4π B(x) +
(

1 − 2r1

1 − 4r3

6

5

)
[4π Bb(x) − 4π B(x)]. (3.4)

Finally, the SP3 boundary conditions for ϕ and ϕ2 in (2.12a) and (2.12b) are [1]: for all
frequencies ν > ν1 and x ∈ ∂V ,

(1 − 2r1)
1

4
ϕ(x) + (1 − 8r3)

5

16
ϕ2(x) + (1 + 3r2)

ε

6κ
n · ∇ϕ(x)

+
(

1 + 3r2

3
+ 3r4

2

)
2ε

3κ
n · ∇ϕ2(x) = ρ1 Bb(x), (3.5a)

−(1 + 8r5)
1

16
ϕ(x) + (1 − 8r6)

5

16
ϕ2(x) + 3r4

ε

6κ
n · ∇ϕ(x)

+
(

r4 + 3

14
(1 + 7r7)

)
ε

κ
n · ∇ϕ2(x) = ρ3 Bb(x), (3.5b)

or formally

A1ϕ(x) + A2ϕ2(x) + A3
ε

κ
n · ∇ϕ(x) + A4

ε

κ
n · ∇ϕ2(x) = ρ1 Bb(x),

B1ϕ(x) + B2ϕ2(x) + B3
ε

κ
n · ∇ϕ(x) + B4

ε

κ
n · ∇ϕ2(x) = ρ3 Bb(x).

Using the formulae in Eq. (2.17), we can transform the above boundary conditions for ϕ
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and ϕ2 into boundary conditions for ψ1 and ψ2. We obtain

w0(γ2 A1 − A2)ψ1 + w0(A2 − γ1 A1)ψ2 + w0(γ2 A3 − A4)
ε

κ
n · ∇ψ1

+ w0(A4 − γ1 A3)
ε

κ
n · ∇ψ2 = ρ1 Bb,

w0(γ2 B1 − B2)ψ1 + w0(B2 − γ1 B1)ψ2 + w0(γ2 B3 − B4)
ε

κ
n · ∇ψ1

+ w0(B4 − γ1 B3)
ε

κ
n · ∇ψ2 = ρ3 Bb,

or again, formally rewritten for convenience,

C1ψ1 + C2ψ2 + C3
ε

κ
n · ∇ψ1 + C4

ε

κ
n · ∇ψ2 = ρ1 Bb,

D1ψ + D2ψ2 + D3
ε

κ
n · ∇ψ1 + D4

ε

κ
n · ∇ψ2 = ρ3 Bb.

We eliminate the gradient term n · ∇ψ2 in the first equation and n · ∇ψ1 in the second to
get boundary conditions for the ψ1 and ψ2 equations, respectively. We find

(C1 D4 − D1C4)ψ1 + (C3 D4 − D3C4)
ε

κ
n · ∇ψ1

= −(C2 D4 − D2C4)ψ2 + (D4ρ1 − C4ρ3)Bb,

−(C2 D3 − D2C3)ψ2 + (C3 D4 − D3C4)
ε

κ
n · ∇ψ2

= (C1 D3 − D1C3)ψ1 − (D3ρ1 − C3ρ3)Bb.

Thus, if we set D = C3 D4 − D3C4 and define constants

α1 = C1 D4 − D1C4

D
, α2 = C3 D2 − C2 D3

D
,

β1 = C3 D1 − D3C1

D
, β2 = C2 D4 − D2C4

D
,

η1 = D4ρ1 − C4ρ3

D
, η2 = C3ρ3 − D3ρ1

D
,

we obtain the following SP3 boundary conditions:

α1ψ1(x) + ε

κ
n · ∇ψ1(x) = −β2ψ2(x) + η1 Bb, (3.6a)

α2ψ2(x) + ε

κ
n · ∇ψ2(x) = −β1ψ1(x) + η2 Bb. (3.6b)

Equations (3.6a) and (3.6b) go with the diffusion equations (2.16a) and (2.16b), respectively.
The coupling of ψ1 and ψ2 in the above boundary conditions is weak.

As an example, let us consider the simple case of no reflection (ρ = 0). Then, the constants
r1, . . . , r7 are all zero. We find after some calculations that D = 1

144

√
6/5, and the constants
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in Eqs. (3.6) are

α1 = 5

96

(
34 + 11

√
6

5

)
, α2 = 5

96

(
34 − 11

√
6

5

)
,

β1 = 5

96

(
2 −

√
6

5

)
, β2 = 5

96

(
2 +

√
6

5

)
,

η1 = 5π

2

(
3 +

√
6

5

)
, η2 = 5π

2

(
3 −

√
6

5

)
.

We note that 0 < βn � αn . Thus, the simple strategy of solving the two diffusion problems
independently (within a single iteration) and iterating on the coefficients of βn will converge
rapidly.

The boundary conditions described above were obtained from a variational analysis, not
from an asymptotic boundary layer analysis. They should be accurate because the exterior
incident flux is isotropic, i.e. is a smooth function of µ. These boundary conditions hold
for general multidimensional sytems having a smooth outer surface with outer normal n.

For the special cases of (i) the SP1 equations in general geometry, and (ii) the general SPN

equations in planar geometry, the above boundary conditions reduce to the Marshak bound-
ary conditions, which are well-known in neutron transport. Also, in these two respective
cases, we have seen that (i) the SP1 and P1 equations are identical, and (ii) the SPN and PN

equations are identical. Therefore: (i) in general geometry, the SP1 equations and boundary
conditions are identical to the P1 equations and boundary conditions, and (ii) in planar
geometry, and for general N, the SPN equations and boundary conditions are identical to
the PN equations and boundary conditions. For non-planar geometry and N ≥ 2, the SPN

and PN approximations differ.

4. NUMERICAL SOLUTIONS OF 1-D PROBLEMS

Here we investigate numerical simulations for one-dimensional slab geometry. We used
a standard finite difference technique to discretize the diffusion equations, with uniform
space and time grids. We chose a grid size 0.01 for the scaled interval [0, 1] and the time
step 0.0001. We assumed the scaled physical parameters k and h in the equations to have
the values k = 1 and h = 1. The edge of the opaque part of the spectrum was located at
the wavelength λ1 = 7 µm, thus giving ν1 = c/λ1 = 4.28 · 1013 s−1. The refractive coeffi-
cients were chosen to be n1 = 1.46 and n2 = 1 for glass and air, respectively. Hence, the
corresponding hemispheric emissivity was α = 0.92. Typical values of the physical con-
stants for glass are used: cm = 900 W/kg K, ρm = 2200 kg/m3. We simulated the annealing
of a glass slab surrounded by air at room temperature Tb = 300 K. The outside radiation
was assumed to be Planckian with temperature Tb. The calculation started with the constant
initial temperature T0(x) = 1000 K.

Different optical regimes were considered, corresponding to different values of the non-
dimensional parameter ε. Since the SPN approximations were derived asymptotically for
ε � 1 the results should agree well with the full transport solution when ε is small, i.e., in
the optically thick regime.

Figure 1 shows the three SPN approximations in comparison to the radiative transfer
solution and the Rosseland approximation at time t = 0.01, using a single frequency band,
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FIG. 1. Comparison of the diffusion and SPN approximations for one frequency band. Results are shown for
the intermediate regime (ε = 1, top) and the optically thick, diffusive regime (ε = 0.01, bottom).

and with ε = 1 and ε = 0.01 respectively. As can be observed, the above approximations,
in particular the SP3 approximation, yield much better results than the conventional equi-
librium diffusion approximation. In particular, in the intermediate regime with ε = 1 they
perform quite well, although the asymptotics would not suggest this. [The reason might be
that the SP1, SP2, and SP3 approximations can be derived in a different way using variational
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TABLE I

Computational Costs of the Different Approximations and the

Full Transport Model in the 1-D Problem Above

Ross. SP1 SP2 SP3 RHT

Flops (×106) 8.2 14.3 14.3 26.9 490.0
Time (s) 21.0 30.0 30.3 42.2 812.8

methods [1, 8, 15]. Using this approach, one finds that the SPN approximations are accurate
if the radiation field is relatively isotropic, which is true in our case.] Furthermore, the SPN

approximations become more accurate the smaller ε is—i.e., the more optically thick and
diffusive the regime is—as we expect from the asymptotic analysis.

A comparison of the run times of the different algorithms reveals that the SP1 and SP2

calculations took roughly 1.5 times (and the SP3 calculation took approximately 2.0 times)
the computational effort to solve the classical Rosseland equation (Table I; data measured
on a PC with AMD-K6 200 processor running MATLAB 5 under Linux 2.2). Nevertheless,
the SPN approximations were solved much faster than the full radiative transfer problem.

We also considered a discontinuity in the opacity κ , corresponding to two different mate-
rials in the left and right halves of the slab. Figure 2 shows the computed numerical solutions
for two different magnitudes of the jump. In both simulations, ε = 0.1. Again, the SPN ap-
proximations give much more accurate results than the classical diffusion approximation.
We remark that the asymptotic considerations were performed for absorption coefficients κ

which are independent of space. The SPN equations are not strictly asymptotic in the general
situation of a multidimensional problem with space-dependent κ . However, in the special
case of planar geometry with spatially-varying κ , the SPN equations are still asymptotically
valid.

5. NUMERICAL SOLUTIONS OF MULTI-D PROBLEMS

It is particularly important to investigate multidimensional geometries because for N ≥ 2,
the SPN and PN equations are equivalent in 1-D, but not in 2-D or 3-D.

We investigate different absorption rates κ as functions of the frequency ν. First, we
consider a situation with only one frequency band, i.e., a constant absorption rate κ = 1 on
the non-opaque interval (ν1, ∞). Second, we consider a case more relevant for the simulation
of glass cooling with the following eight frequency bands: [νi , νi+1], i = 1, . . . , 8 with
piecewise constant absorption rate κ(ν) = κi , ν ∈ [νi , νi+1] (Table II).

Now, we consider a 2-D circle with radius r = 0.5. We use an equidistant step size
�r = 0.005 and calculate the solution at time t = 0.001. Except for the opacity κ , we used
the same parameter set as in the 1-D case. In particular, we used ε = 1 and k = 1. In Fig. 3,
the transport solution is plotted, together with the SPN approximations and the Rosseland
approximation. This figure reveals that again the SPN approximations—in particular, SP3 —
coincide very well with the transport solution.

Finally, we treated a 3-D problem with the eight frequency bands defined above. We
simulate the cooling of a glass cube of side length 1.0 cm, with a uniform initial tempera-
ture distribution T0 = 900 K and outside temperature Tb = 293.15 K. The dimensionless
parameter ε had the fixed value 1, and we set k = 100, while the remaining parameters were
the same as in the previous examples.
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FIG. 2. Temperatures in the presence of discontinuous opacities. The top figure corresponds to κ = 0.1 in
the left half of the slab and κ = 1 in the right half; the bottom figure corresponds to κ = 0.1 in the left half of the
slab and κ = 10 in the right half.

Figure 4 shows a comparison of the SPN solutions and the full transport solution, and
Fig. 5 displays the exact 3-D temperature distribution in the cube, at time t = 0.01. For
the simulation of the full transport model in three dimensions, we employed a ray tracing
algorithm implemented by one of the authors. A grid spacing of 21 points per space direction
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TABLE II

Absorption Cross Sections of an Eight-Band Model for Glass

Band i λi [µm] λi+1 [µm] κi [1/m]

1 0 0.20 0.40
2 0.20 3.00 0.50
3 3.00 3.50 7.70
4 3.50 4.00 15.45
5 4.00 4.50 27.98
6 4.50 5.50 267.98
7 5.50 6.00 567.32
8 6.00 7.00 7136.06

— 7.00 ∞ opaque

Note. The bands are defined by wavelength intervals (data kindly provided
by ITWM, Kaiserslautern).

was used. The SPN approximations were checked against the results of this method. It can
be seen that they match the temperature of the latter very well, and are much more accurate
than standard equilibrium diffusion. In particular, they reconstruct the temperature near the
boundary much more faithfully than Rossland’s approximation. This is due to the fact that
the Rosseland model does not include boundary layer effects, while SP1 and the higher order
approximations do so. Good agreement of the temperature distribution at the boundary is
also observed in the 1-D and 2-D cases considered above.

In each of the above simulations, the SPN solutions exhibit physically correct boundary
layers that are not present in the Rosseland solution. This raises an important computational
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FIG. 3. Radial temperature distribution in a 2-D circle at time t = 0.001 using the eight-band model for the
frequency dependence of the the opacity with piecewise constant κ(ν).
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issue: to accurately capture these boundary layers numerically, the discrete SPN equations
must be solved on a finer spatial grid than is required for the Rosseland equation. Thus, to
achieve an accurate description of temperature boundary layers in the annealing of glass, it
is necessary to (i) employ a more sophisticated theory than the Rosseland approximation,
and (ii) use a finer spatial grid, at least in the boundary-layer regions where large temperature
derivatives occur.

Finally, we comment that in 2-D and 3-D problems, the cost of the SPN calculations
compared to the cost of the full radiative transfer calculation is less than in 1-D. There are
at least two reasons for this. First, the mathematical theory for obtaining efficient numerical
solutions of diffusion equations is much more mature than the corresponding theory for
solving multidimensional tranport problems. (For example, multigrid methods are generally
available for diffusion calculations, but not for transport calculations.) Second, in going from
1-D to 2-D, the number of independent variables in diffusion problems increases by one
(one spatial variable), while the number of independent variables in transport problems
increases by two (one spatial variable and one angular variable).

6. DISCUSSION

We have developed asymptotic approximations—the so-called SPN equations—to the
equations of radiative heat transfer in glass, for problems that are optically thick and dif-
fusive. The simplest such approximation is equilibrium diffusion theory, which itself is
an approximation to the SP1 equations. Formally, and under ideal circumstances, the SPN

approximations for increasing N are increasingly higher-order asymptotic approximations
to the radiative transfer equations. However, two non-asymptotic approximations may in-
terfere with the strictness of this asymptotic pedigree: a space-dependent value of κ , and
the use of variationally derived boundary conditions.

In multidimensional geometries with N ≥ 2, the SPN equations are a considerably smaller
and less complicated set of equations than the standard spherical harmonic (PN ) equations.
In the field of neutron transport, the SPN equations have been tested fairly extensively, and
have been shown to be a significant, robust, and relatively inexpensive way to improve the
accuracy of classic diffusion theory. We believe that these advantages apply as well for
radiative transfer in glass.

A numerical investigation of the above SPN equations shows that the conjecture in the
above paragraph is correct. Specifically, we have shown that (i) the SPN equations are
accurate approximations to the radiative heat transfer equations, even when the regime
becomes less diffusive, and (ii) the complexity and cost of solving the SPN equations is
considerably reduced in comparison to the full radiative heat transfer problem.

The SPN theories developed in the present paper are based on the assumption that a
mean free path is small compared to the distance over which the solution varies by an O(1)

amount. This is generally true only if the glass object that is cooling down is convex. If the
glass object is not convex, then a significant number of photons that leak out of the exterior
surface will stream through the surrounding air (where the mean free path is long) and then
re-enter V at some relatively distant point on ∂V . To model this phenomenon correctly,
the transport process must be simulated outside V , at least for the part of the exterior of V
through which exiting photons stream en route to re-entering V at another boundary point.
Unfortunately, the SPN approximation is generally inaccurate in the exterior of V , where
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the mean free paths are not small. Hence, the SPN (and Rosseland) theories are generally
accurate only for convex domains.

We now make some general observations on the mathematical analysis and the results
developed in this paper. The analysis used to derive the SPN equations is clearly asymptotic
in nature, using the diffusive scaling contained in Eqs. (1.4), together with the assumptions
that (i) ε � 1 and (ii) the solution and its spatial derivatives are O(1) in magnitude.

Our first comment is that in this paper, we do not derive an expansion of the solution of
the underlying radiative transfer problem. Instead, we obtain an expansion of the transport
operator. Our first result is the (infinitely) high-order differential equation (2.2), from which
we derive the second-order S P1, SP2, and SP3 equations. Thus, for us, the term “higher-
order approximations” does not mean that we have expanded the solution and calculated the
coefficients (of the solution) for increasingly higher powers of ε. Rather, we have calculated
robust and increasingly more accurate (systems of) equations, from which a more accurate
solution can be obtained numerically.

Second, as already mentioned, the first result of our asymptotic analysis is Eq. (2.2):
a differential equation of infinitely high order. However, we do not recommend that this
equation, or approximations to it obtained just by deleting terms equal to or smaller than
O(ε4), be solved directly. We do recommend that asymptotic (SPN ) aproximations to
Eq. (2.2), having the form of coupled systems of second-order elliptic (diffusion) equa-
tions, be solved instead. These coupled diffusion equations are asymptotically equivalent
to Eq. (2.2), but they are robust and easier to solve computationally. To put this another
way, we recommend that coupled systems of second-order differential equations be solved,
rather than one higher (fourth, or sixth, etc.)-order differential equation.

Third, the multidimensional SPN equations and boundary conditions derived in this pa-
per reduce, for the special case of planar geometry, to the familiar planar-geometry PN

equations and Marshak boundary conditions. A simple but formal procedure to derive the
multidimensional SPN equations and boundary conditions from the planar-geometry PN

equations and boundary conditions is as follows:

1. For planar geometry radiative transfer problems, derive the familiar planar-geometry
PN equations and boundary conditions. (These are a coupled system of first-order equations,
which are differential in the spatial variable.)

2. Algebraically eliminate the odd-order angular moments from the equations derived in
step 1. (This produces a coupled system of second-order differential equations and boundary
conditions.)

3. In the system of second-order differential equations from step 2, formally replace the
1-D Laplacian operator by the multi-D Laplacian operator,

d

dx
D(x)

d

dx
by ∇ · D(x, y, z)∇, (6.1)

and in the boundary conditions from step 2, formally replace

± d

dx
by n · ∇ (6.2)

where + or − is chosen so that the outer derivative on the boundary is obtained.

It is obvious that the multidimensional SPN equations obtained in step 3 reduce to the
second-order PN equations for the special case of planar geometry.
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For many years, this formal procedure was the only known way to derive the neutron
transport SPN equations and boundary conditions from the linear Boltzmann equation. This
perceived weakness in the theoretical foundation of the SPN approximations resulted in
the lack of acceptance of these approximations in the nuclear reactor community, even
though numerical simulations, sporadically obtained over many years, showed that the SPN

solutions with N > 2 are consistently more accurate than the P1 solutions. However, in
the previous decade, more rigorous asymptotic and variational methods have been used to
achieve the derivations of the neutron transport SPN equations and boundary conditions
[1, 8]. Generalizations of those approaches are presented in this paper for radiative heat
transfer in glass.

Fourth, the asymptotic expansion used in this paper assumes that the solution and its
spatial derivatives are O(1). Thus, this expansion seems not to be one that should lead
to accurate descriptions of spatial boundary layers, where spatial derivatives are O(ε−1).
Nevertheless, our numerical results show that the SPN approximations are much more
accurate than the Rosseland approximation in the boundary layer regions. It is not obvious
to us why this happens, but experimentally, it does. There may be theoretical principles at
work here that we do not yet fully understand.

In the field of nonlinear gas dynamics, governed by the nonlinear Boltzmann equation, a
situation occurs which is quite similar to the one seen in this paper: an asymptotic expan-
sion (related to the one employed here) leads to the second-order Navier–Stokes equations,
with the (higher-order) Burnett equations arising as higher-order (in ε) asymptotic correc-
tions. [The Navier–Stokes equations correspond to Eq. (2.2) with O(ε4) terms discarded;
the Burnett equations correspond to Eq. (2.2) with O(εn) terms discarded, with n ≥ 6.]
The Burnett equations themselves have not been generally successful in producing accu-
rate transport corrections to the Navier–Stokes equations [2]. However, a restructuring of
these equations into, for example, asymptotically equivalent coupled systems of second-
order differential equations might be advantageous—if this is algebraically feasible. Such
a stragegy is clearly advantageous for neutron transport [1, 8]; it has recently been shown
to be advantageous in the derivation of more accurate Fokker–Planck approximations for
electron transport [10], and we show in this paper that it is advantageous for radiative heat
transfer in glass. This strategy might be beneficial for other particle transport problems as
well.

It is appropriate to comment on the physical assumption in this paper that ε, the ratio of a
typical mean free path to a typical length scale of the solution (say, a typical diameter of the
system) is small. This assumption is definitely not valid for optical photons, which for the
most part propagate through (clear) glass unimpeded, without undergoing any collisions.
However, in industrial problems, glass temperatures are much higher than room temperature,
and at such temperatures, the mean free paths of photons at frequencies that carry most of
the radiative energy are indeed short. Thus, despite physical intuition concerning optical
photons, a typical value of ε in practical glass-annealing problems is indeed sufficiently
small that asymptotic expansions of the type discussed in this paper are relevant.

Finally, we comment on the quality of the SPN solutions that we have obtained numer-
ically. Generally, the SPN solutions are in very good agreement with the solution of the
original radiative heat transfer equations. In particular, the SP3 solution coincides remark-
ably well with the radiative transfer solution, even in the presence of a discontinuity in
the opacities. Also, the SPN models significantly outperform the standard Rosseland ap-
proximation, which has been used for a long time as an approximation for optically thick,
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diffusive problems. We also note that, in contrast to the Rosseland equation, the SPN equa-
tions give good results even when the regime is not so diffusive. The numerical SPN solution
is somewhat more costly than the solution of the Rosseland approximation, but much less
costly than the full radiative heat transfer problem. Finally, the SPN systems of diffusion
equations can be solved by widely used, conventional software packages.
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